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Abstract

We present PARSEC a 3D parallel self-consistent parti-
cle tracking program which allows electron-cloud calcula-
tions in arbitrary external fields. The program is based on
an general particle tracking framework called GenTrackE
[5]. The Lorentz force equation is integrated with time as
the independent variable. A 3D parallel Multigrid solver
computes the electric field for the drive beam in the beam
frame, while the space-charge field of the electrons is com-
puted in the lab frame. The resulting total field, obtained by
superposition, acts on both the beam particles and the cloud
electrons. Primary and secondary emission takes place at
each time step of the calculation. This sort of computation
is only possible by the use of massive parallelization of the
particle dynamics and the Poisson solver in combination
with modern numerical algorithms such as the Multigrid
solver with Gauss-Seidel smoothing.

INTRODUCTION AND MOTIVATION

The electron-cloud effect (ECE) has been investigated in
various storage rings for several years now [1]. The ECE
arises from the strong coupling of a two-species plasma
with the surrounding vacuum chamber. Several analyti-
cal models and simulation programs and have been de-
veloped to study this effect [2]. Owing to the complex-
ity of the problem, these simulation codes typically make
one or more simplifying assumptions, such as: (1) the elec-
trons are dynamical but the beam is a prescribed function of
space and time; (2) the beam is dynamical but the electron
cloud is a prescribed function of space and time; (3) both
the beam and the electrons are dynamical, but the electron-
wall interaction, particularly the secondary emission pro-
cess, is either absent or much simplified; (4) the geome-
try of the beam and/or vacuum chamber is much simpli-
fied (eg., round beams and/or cylindrical chambers); (5)
the simulation “looks” at only one specific region of the
machine, typically a field-free region or one magnet of a
specific kind; (6) the forces on the particles, both from, and
on, the electrons and the beam, are purely transverse. Com-
puter codes involving these approximations, when applied
in the proper context, have shed valuable information on
one or more aspects of the ECE.

There is a class of problems, however, in which any
of these approximations may render the reliability of code
predictions inadequate for a quantitative understanding of
the dynamics. These problems typically involve very long,
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intense, bunches with significant variation in the longitudi-
nal profile, and require a self-consistent, fully 3D, simula-
tion, including a full description of the storage ring lattice
(or at least, a section of the lattice at least as long as the
bunch). In this article we report on progress towards the
goal of a fully self-consistent and realistic simulation of
the ECE which, in its final stage, will not invoke any of the
above-mentioned simplifications.

THE OVERALL SIMULATION MODEL

Self-consistent formulation

Let the particle coordinates of particle � be ����
	������������������ � , and the normalized velocity be �� � 	����������� ��!������ ��"������ � where
�

is the speed of light (all quan-
tities in MKS units unless explicit stated otherwise). We
consider # 	%$ ��&��('�'(' magnetic elements which makes up
what is called the lattice ) . Defining * 	,+-$ ��&.��'�'('0/ and1 	2+-$ ��&��('�'('0/ the index sets for the beam particles and
electrons, respectively as unique identifiers, we are able to
distinguish beam particle ( 3546* ) and electron coordinates
(784 1

) in an natural way (see Figure 1 as an illustration).
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Figure 1: (color) Geometry and Particle domains.

For each particle �94:*<; 1
we solve formally

= ��> ��?.� � �� � �
=-@ 	 �A � ��B� � @ � (1)

�A � ��B� � @ � 	 � �
? � > � � �C � ��D� � @ �FE �� �HG �I � ��B� � @ �J� (2)

where
> � and

� � is the mass and charge of the particle,
respectively, and ?.� its usual relativistic factor, and where

�C � ��D� � @ � 	LKNMPO � ��D� � @ � (3)

and the lattice magnetic field �I in cylindirical coordinates
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is represented by:

I�� 	�� ����� � *
	� ��� � "� ������� �> O �����
����� � "�� �
I�� 	 � ����� � >

� � "  * � ��� � "� ����������> O �������(��� � "�� �
I " 	 K�� � ��� � >� � "� * � ��� � "  ����� � ��> O �������(��� � " � �"!

(4)

Here * � is the usual modified Bessel function, which satis-
fies * 	� ��� � "  � 	 ��$# * �&% ����� � "  � E * �(' � ��� � "  �*)

. In this
formulation we will tread coasting beams only although
it is straightforward to include acceleration. The poten-
tial O is obtained by solving two Poisson problems with�+ � ���, � and

.- � ��$/ � the electron and beam charge density.
Let �� 	/ 	10 � ��2/ � with 0 denoting the proper Lorentz trans-
formation from the laboratory to the beam rest frame. The
first Poisson problem, in which the beam charge density

2-
is the source, reads:

3 O � �� 	/ � 	 K �- � �� 	/ �465 � �� 	/ 487:9<; �

O � �� 	/ � 	>= � �� 	/ 4@?A7 ! (5)

Assuming that the electrons are sufficiently nonrelativistic,
which is typically a good approximation, we can neglect
their contribution to the magnetic field, and we can solve
in the laboratory frame for the second Poisson problem, in
which the electron-cloud density

B+
is the source,

3 O � ��2/ � 	LK �+ � ��$/ �
465 � ��$/ 487C9<; �

O � �� / � 	C= � �� / 4@?D7 (6)

After applying the appropriate inverse Lorentz transforma-
tion for the first potential, we obtain the full answer by su-
perposing the two scalar fields we finally get:

�A � ��B� � @ � 	 � �
? > � � �C + � ��B, � @ � E �C - � ��$/ � @ � E

�� � G � �I + ��E � ��B� � @ � E �I - � ���, � @ �J� � (7)

where �I -
is the magnetic field in the lab frame produced

by the beam.

Secondary Emission Model

When an electron strikes the vacuum chamber wall, it
can be absorbed or can generate one or more secondary
electrons. In our computations we simulate this process by
a detailed probabilistic described elsewhere [3]. This pro-
cess incorporates, as inputs, the measured secondary elec-
tron yield (SEY) F and the energy spectrum of the emit-
ted electrons,

= F � = C for a given vacuum chamber surface
materail. The three main subprocesses, namely elastical
reflection, rediffusion, and true secondary emission, are in-
cluded.

Time integration

The code integrates (1) using a 4th-order Runge-Kutta
method, with adaptive time step control for the electrons.
We estimate the time step G , by considering the cyclotron
frequency HJI 	CK I ��> +

, consequently

G ,N	 &ML
HNI6O

!
(8)

is defined upon the factor O . Defining 4 � / � and 4 �QP �
the

minimum and maximum error tolerated we estimate O us-
ing two Runge-Kutta steps and Richardson Extrapolation
[6]. Choosing an initial step size G , by setting O 	 $ and
let R �

be the result of an Runge-Kutta step of length G , .
Let R �

is the result of two subsequent Runge-Kutta steps of
length G , � & . We then estimate the error by

4 	TS R � K R � S ! (9)

Richardson Extrapolation is then be used to set O corre-
sponding to an error-range as defined. This procedure will
guarantee the minimal work in order to achieve a desired
accuracy, considering the dynamic of the individual parti-
cle.
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Figure 2: Tracking Algorithm

Particle Tracking Procedure

As a first step towards a full lattice simulation, we
model a portion of the magnetic lattice by imposing pe-
riodic boundary conditions in the

�
coordinate, for exam-

ple one half of the PSR circumference or one FODO cell
of the LHC arc. Further, we assume a constant number
of particles in the drive beam, and a fixed number ¤ of
time steps of size ¥�G . All electrons 3 4 * and protons
7 4 1

are advanced by ¤�¥�G followed by a space-charge



calculation. The simplified algorithm for advancing all
particles by ¤z¥ G in time is pictured in Figure 2, where@ 3 > K ) K � @ , 	 ¤�¥�G K @ , and ATTHEWALL indicate that
a particles hits the vacum chamber (we left out some of the
indexes where the meaning is deducible form the contents)
.

 "
is the longitudinal charge density of the drive beam

which determines the distribution of the generated primary
electrons.

Poisson Solver

For the Poisson solver, this type of simulations is very
demanding. First of all, the computational domain 7 is
very large and almost completely filled with simulation
particles. Second, the number of macro particles (or simu-
lation particles) is huge (many times $�=�� ) and the number
of time steps is large as well. The Poisson solver uses a
semi-unstructured grid as shown in Figure 3 to decompose7 . Linear bases function are used to assemble the stiff-
ness matrix � and the right hand side

���
(discrete charge

density) is constructed using a area wighting scheme. The
resulting linear system of equations

K ¥ O9	 
4 5 � O:	>=�� � ?D7 	
	 � R � 	 ���

(10)

is solved using parallel Multigrid. From the solution R � we
back-interpolate and use a second-order finite-difference
scheme in order to obtain the two electric fields used in
equation (7). Preliminary performance of the parallel Pois-

Figure 3: (color) Finite Element Discretization of 7
son Solver [4] and the parallel grid generators is shown in
Table 1 for an toy Poisson problem in �

�
(sphere). We

show in Table 1 the scalability of the grid generator and the
solver. A method is said to be scalable, if the time (T) times
the used processors (P) divided by problem size (M) is
bound. The data in Table 1 is given for the grid generation
(in column 3) and for one multigrid iteration (in column
5) with an Gauss-Seidel smoother. Table 1 shows excel-
lent scalability with respect to the problem size  which
is equivalent to say we can handle in the order of 1E11
macro particles in a simulation with reasonable comput-
ing time. For this scaling study we use the Seaborg (IBM
SP-3) computer at NERSC.

� � ����� � � � ��� � �
8 625’464 3.5e-3 3.1 3.9e-5
32 306’080 8.5e-3 0.78 8.1e-5
248 4’751’744 5.90e-3 1.2 6.2e-5
248 36’998’619 7.50e-3 7.7 5.1e-5
960 23’312’735 4.85e-3 4 1.64e-4
2025 405’242’845 6.60e-3 10.7 5.3e-5
4075 7’166’171’845 8.76e-3 160 9.9e-5

Table 1: Scalability of the parallel grid generator G
��� � 
and the Poisson solver showing also G , the time in seconds
for one Multigrid step

CONCLUSION

The presented code PARSEC is based on GenTrackE,
which is written in C++ and is fully parallelized using MPI
. PARSEC advances macro particle of the drive beam and
the electrons using a 4th-order Runge-Kutta method. Vari-
able time steps for the electrons according to their dynam-
ics are used. The arbitrarily shaped computational domain
is discretized using linear finite elements, the resulting lin-
ear system of equation is solved efficiently by the use of an
massive parallel and scalable Multigrid solver.

We are toward the end of an painful code construction
and are about to start simulation of an simplified LHC
FODO cell as well as some part of the Los Alamos proton
storage ring. The issue of large aspect ratios in the compu-
tational domain and the impact of the accuracy of the Pois-
son solver will be investigated in detail, an subject which
is of general importance in many space charge dominated
problems.
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